On a gap phenomenon for isoperimetrically constrained variational problems
نویسندگان
چکیده
We consider functional of the calculus of variations subjected to constraints of the form / g(x,u)dx = 1. Jn We identify the relaxed problem and we show that, when a lack of compactness occurs, the constraint may relax to a gap term.
منابع مشابه
Free and constrained equilibrium states in a variational problem on a surface
We study the equilibrium states for an energy functional with a parametric force field on a region of a surface. Consideration of free equilibrium states is based on Lyusternik - Schnirelman's and Skrypnik's variational methods. Consideration of equilibrium states under a constraint of geometrical character is based on an analog of Skrypnik's method, described in [P. Vyridis, {it Bifurcation in...
متن کاملA Hybrid Newton Method for Solving Box Constrained Variational Inequality Problems via the D-gap Function
A box constrained variational inequality problem can be reformulated as an unconstrained minimization problem through the D-gap function. A hybrid Newton-type method is proposed for minimizing the D-gap function. Under suitable conditions, the algorithm is shown to be globally convergent and locally quadratically convergent. Some numerical results are also presented.
متن کاملPROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کاملA Hybrid Josephy-newton Method for Solving Box Constrained Variational Inequality Problems via the D-gap Function
A box constrained variational inequality problem can be reformulated as an unconstrained minimization problem through the D-gap function. Some basic properties of the aane variational inequality subproblems in the classical Josephy-Newton method are studied. A hybrid Josephy-Newton method is then proposed for minimizing the D-gap function. Under suitable conditions, the algorithm is shown to be...
متن کاملSolving box constrained variational inequalities by using the natural residual with D-gap function globalization
We present a new method for the solution of the box constrained variational inequality problem, BVIP for short. Basically, this method is a nonsmooth Newton method applied to a reformulation of BVIP as a system of nonsmooth equations involving the natural residual. The method is globalized by using the D-gap function. We show that the proposed algorithm is globally and fast locally convergent. ...
متن کامل